Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Polymers (Basel) ; 16(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732723

A promising therapeutic option for the treatment of critical-size mandibular defects is the implantation of biodegradable, porous structures that are produced patient-specifically by using additive manufacturing techniques. In this work, degradable poly(DL-lactide) polymer (PDLLA) was blended with different mineral phases with the aim of buffering its acidic degradation products, which can cause inflammation and stimulate bone regeneration. Microparticles of CaCO3, SrCO3, tricalcium phosphates (α-TCP, ß-TCP), or strontium-modified hydroxyapatite (SrHAp) were mixed with the polymer powder following processing the blends into scaffolds with the Arburg Plastic Freeforming 3D-printing method. An in vitro degradation study over 24 weeks revealed a buffer effect for all mineral phases, with the buffering capacity of CaCO3 and SrCO3 being the highest. Analysis of conductivity, swelling, microstructure, viscosity, and glass transition temperature evidenced that the mineral phases influence the degradation behavior of the scaffolds. Cytocompatibility of all polymer blends was proven in cell experiments with SaOS-2 cells. Patient-specific implants consisting of PDLLA + CaCO3, which were tested in a pilot in vivo study in a segmental mandibular defect in minipigs, exhibited strong swelling. Based on these results, an in vitro swelling prediction model was developed that simulates the conditions of anisotropic swelling after implantation.

2.
Sci Rep ; 14(1): 9444, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658667

One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.


Fibroblasts , Light , Reactive Oxygen Species , Humans , Animals , Fibroblasts/metabolism , Fibroblasts/radiation effects , Fibroblasts/cytology , Mice , Reactive Oxygen Species/metabolism , Cell Survival/radiation effects , Dental Pulp/cytology , Dental Pulp/radiation effects , Osteoblasts/metabolism , Osteoblasts/radiation effects , Osteoblasts/cytology , Cells, Cultured , Cell Line , Stem Cells/metabolism , Stem Cells/radiation effects , Stem Cells/cytology , Glutathione/metabolism
3.
Biomater Adv ; 156: 213708, 2024 Jan.
Article En | MEDLINE | ID: mdl-38029698

Tissue engineering of ligaments and tendons aims to reproduce the complex and hierarchical tissue structure while meeting the biomechanical and biological requirements. For the first time, the additive manufacturing methods of embroidery technology and melt electrowriting (MEW) were combined to mimic these properties closely. The mechanical benefits of embroidered structures were paired with a superficial micro-scale structure to provide a guide pattern for directional cell growth. An evaluation of several previously reported MEW fiber architectures was performed. The designs with the highest cell orientation of primary dermal fibroblasts were then applied to embroidery structures and subsequently evaluated using human adipose-derived stem cells (AT-MSC). The addition of MEW fibers resulted in the formation of a mechanically robust layer on the embroidered scaffolds, leading to composite structures with mechanical properties comparable to those of the anterior cruciate ligament. Furthermore, the combination of embroidered and MEW structures supports a higher cell orientation of AT-MSC compared to embroidered structures alone. Collagen coating further promoted cell attachment. Thus, these investigations provide a sound basis for the fabrication of heterogeneous and hierarchical synthetic tendon and ligament substitutes.


Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Collagen/chemistry , Anterior Cruciate Ligament , Tendons
4.
Adv Healthc Mater ; 12(23): e2300436, 2023 09.
Article En | MEDLINE | ID: mdl-37125819

Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource-consuming preparatory step already on Earth and transport a bioink cartridge "ready to use" to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS-2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.


Bioprinting , Chlorella vulgaris , Humans , Methylcellulose , Cell Survival , Alginates , Cell Line , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
5.
Adv Healthc Mater ; 8(7): e1801631, 2019 04.
Article En | MEDLINE | ID: mdl-30835971

Transplantation of pancreatic islets is a promising strategy to alleviate the unstable blood-glucose control that some patients with diabetes type 1 exhibit and has seen many advances over the years. Protection of transplanted islets from the immune system can be accomplished by encapsulation within a hydrogel, the most investigated of which is alginate. In this study, islet encapsulation is combined with 3D extrusion bioprinting, an additive manufacturing method which enables the fabrication of 3D structures with a precise geometry to produce macroporous hydrogel constructs with embedded islets. Using a plottable hydrogel blend consisting of clinically approved ultrapure alginate and methylcellulose (Alg/MC) enables encapsulating pancreatic islets in macroporous 3D hydrogel constructs of defined geometry while retaining their viability, morphology, and functionality. Diffusion of glucose and insulin in the Alg/MC hydrogel is comparable to diffusion in plain alginate; the embedded islets continuously produce insulin and glucagon throughout the observation and still react to glucose stimulation albeit to a lesser degree than control islets.


Bioprinting/methods , Hydrogels/chemistry , Printing, Three-Dimensional , Alginates/chemistry , Animals , Cell Survival/drug effects , Female , Glucose/metabolism , Hydrogels/pharmacology , Insulin/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation , Methylcellulose/chemistry , Porosity , Rats , Rats, Wistar , Tissue Engineering , Tissue Scaffolds/chemistry
6.
J Mater Sci Mater Med ; 29(6): 74, 2018 May 26.
Article En | MEDLINE | ID: mdl-29804259

Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.


Alginates/chemistry , Bone Regeneration , Cartilage, Articular/metabolism , Osteocytes/cytology , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Bone and Bones/metabolism , Chondrogenesis , Collagen/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Immunohistochemistry , Inflammation , Male , Osteogenesis , Rabbits , Sheep , Wound Healing , X-Ray Microtomography
7.
Int J Biol Macromol ; 104(Pt B): 1955-1965, 2017 Nov.
Article En | MEDLINE | ID: mdl-28365291

The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications.


Biocompatible Materials , Chitin , Mesenchymal Stem Cells/cytology , Porifera , Tissue Engineering , Tissue Scaffolds , Adipogenesis , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Chitin/chemistry , Cryopreservation , Humans , Materials Testing , Porifera/chemistry , Spectroscopy, Fourier Transform Infrared , Tissue Engineering/methods
8.
Int J Biol Macromol ; 104(Pt B): 1966-1974, 2017 Nov.
Article En | MEDLINE | ID: mdl-28347785

The recently discovered chitin-based scaffolds derived from poriferans have the necessary prosperities for potential use in tissue engineering. Among the various demosponges of the Verongida order, Aplysina aerophoba is an attractive target for more in-depth investigations, as it is a renewable source of unique 3D microporous chitinous scaffolds. We found these chitinous scaffolds were cytocompatible and supported attachment, growth and proliferation of human mesenchymal stromal cells (hMSCs) in vitro. Cultivation of hMSCs on the scaffolds for 7days resulted in a two-fold increase in their metabolic activity, indicating increased cell numbers. Cells cultured onto chitin scaffolds in differentiation media were able to differentiate into the chondrogenic, adipogenic and osteogenic lineages, respectively. These results indicate A. aerophoba is a novel source of chitin scaffolds to futher hMSCs-based tissue engineering strategies.


Chitin , Mesenchymal Stem Cells/cytology , Porifera , Tissue Engineering , Tissue Scaffolds , Adipogenesis , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Chitin/chemistry , Chondrogenesis , Humans , Mesenchymal Stem Cells/ultrastructure , Osteogenesis , Porifera/chemistry , Tissue Engineering/methods
9.
J Tissue Eng Regen Med ; 11(5): 1574-1587, 2017 05.
Article En | MEDLINE | ID: mdl-26202781

Biofabrication of tissue engineering constructs with tailored architecture and organized cell placement using rapid prototyping technologies is a major research focus in the field of regenerative therapies. This study describes a novel alginate-based material suitable for both cell embedding and fabrication of three-dimensional (3D) structures with predefined geometry by 3D plotting. The favourable printing properties of the material were achieved by using a simple strategy: addition of methylcellulose (MC) to a 3% alginate solution resulted in a strongly enhanced viscosity, which enabled accurate and easy deposition without high technical efforts. After scaffold plotting, the alginate chains were crosslinked with Ca2+ ; MC did not contribute to the gelation and was released from the scaffolds during the following cultivation. The resulting constructs are characterized by high elasticity and stability, as well as an enhanced microporosity caused by the transient presence of MC. The suitability of the alginate/MC blend for cell embedding was evaluated by direct incorporation of mesenchymal stem cells during scaffold fabrication. The embedded cells showed high viability after 3 weeks of cultivation, which was similar to those of cells within pure alginate scaffolds which served as control. Maintenance of the differentiation potential of embedded cells, as an important requirement for the generation of functional tissue engineering constructs, was proven for adipogenic differentiation as a model for soft tissue formation. In conclusion, the temporary integration of MC into a low-concentrated alginate solution allowed the generation of scaffolds with dimensions in the range of centimetres without loss of the positive properties of low-concentrated alginate hydrogels with regard to cell embedding. Copyright © 2015 John Wiley & Sons, Ltd.


Alginates/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Methylcellulose/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Mesenchymal Stem Cells/cytology
10.
J Tissue Eng Regen Med ; 10(5): 404-17, 2016 05.
Article En | MEDLINE | ID: mdl-24644134

Sufficient treatment of chondral and osteochondral defects to restore function of the respective tissue remains challenging in regenerative medicine. Biphasic scaffolds that mimic properties of bone and cartilage are appropriate to regenerate both tissues at the same time. The present study describes the development of biphasic, but monolithic scaffolds based on alginate, which are suitable for embedding of living cells in the chondral part. Scaffolds are fabricated under sterile and cell-compatible conditions according to the principle of diffusion-controlled, directed ionotropic gelation, which leads to the formation of channel-like, parallel aligned pores, running through the whole length of the biphasic constructs. The synthesis process leads to an anisotropic structure, as it is found in many natural tissues. The two different layers of the scaffolds are characterized by different microstructure and mechanical properties which provide a suitable environment for cells to form the respective tissue. Human chondrocytes and human mesenchymal stem cells were embedded within the chondral layer of the biphasic scaffolds during hydrogel formation and their chondrogenic (re)differentiation was successfully induced. Whereas viability of non-induced human mesenchymal stem cells decreased during culture, cell viability of human chondrocytes and chondrogenically induced human mesenchymal stem cells remained high within the scaffolds over the whole culture period of 3 weeks, demonstrating successful fabrication of cell-laden centimetre-scaled constructs for potential application in regenerative treatment of osteochondral defects. Copyright © 2014 John Wiley & Sons, Ltd.


Bone Regeneration , Chondrocytes/metabolism , Chondrogenesis , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Chondrocytes/cytology , Humans , Mesenchymal Stem Cells/cytology , Porosity
11.
PLoS One ; 10(6): e0129205, 2015.
Article En | MEDLINE | ID: mdl-26067982

The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG). Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO2 (scCO2) treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO2 treatment effectively inactivates microorganisms including bacterial spores. We established a scCO2 sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD). These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO2 sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO2 treatment. Human mesenchymal stem cell viability and proliferation were not compromised by scCO2 treatment of these materials and scaffolds. We conclude that scCO2 sterilization under addition of water, hydrogen peroxide and acetic anhydride is a very effective, gentle, non-cytotoxic and thus a promising alternative sterilization method especially for biomaterials.


Biomedical and Dental Materials , Sterilization/methods , Carbon Dioxide , Cold Temperature
...